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Background
Development of dialog systems has revolutionized human-computer interactions
• Long history of development

• Eliza (rule-based chatbot in 1966) à Statistical-based Model à Retrieval-based Systems 
à Generative Models à ChatGPT (State-of-the-art)

• Output pre-defined responses by rules à providing human-like 
conversation experience

• Plenty of applications
• Virtual assistant/digital human
• Education/Healthcare robot
• Entertainment: emotional support, chit-chat, NPC in games,…

LuxAI Educational RobotTencent Cloud AI Digital Human First AI NPC by Nvidia

Eliza Chatbot
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Motivation
• Most dialog systems are trained on massive dialog content from various speakers to

only learn the general conversation patterns
• Deliver general responses regardless of users’ characteristics
• Lack stable and interpretable emotional expression
• Generate content in inconsistent language styles

[1] Mischel, W., Shoda, Y., & Ayduk, O. (2007). Introduction to personality: Toward an integrative science of the person. John Wiley & Sons.

• Personality is a set of relatively stable individual 
traits and characteristics that define a person's 
distinctive pattern of thinking, feeling, and acting[1]

• Represent characteristics of users 
• Encompass tendency of emotional expressions
• Affect word usages and language tones in responses The Big Five Personality Traits
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Comprehending and reflecting personality for personalization, emotional 
intelligence, and language style consistency in dialog systems



• How to comprehend personality, equip personality to dialog systems, and reflect 
personality in responses?

• Understand the personality manifested in dialog context

• Analyze cues from conversation content to infer users’ personality traits

• Incorporate personality traits into dialog systems

• Specify and quantitatively model the personality trait for dialog systems

• Ensure responses consistently reflect the specified personality trait

• Affect and adjust language style, tone, and content to match the specified personality

Research Problem
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Research Challenges
• Comprehending personality in insufficient data

• Understanding long-term patterns (personalities) from short-term conversations is difficult
• Dialog content with precise personality annotations is rare

• Integrating psychological findings into neural network (NN)-based models
• Personality is defined and analyzed in psychology; psychological findings on personality 

provide theoretical evidence for integrating personality into dialog systems
• Findings in small groups may be unsuitable for NN-based models trained on the massive 

general corpus

• Reflecting personality consistently across various dialog contexts
• Identifying and effectively controlling factors influenced by personality consistently across 

different dialog contexts is difficult
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Research Framework
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Psychology-assisted Personality Incorporation (Research Contribution 3)

Consistent Personality Reflection (Research Contribution 4)
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Research Contribution 1

8

Affective Dialog Encoder for Personality 
Recognition in Conversation

-- The first model to leverage affective information for 
personality recognition in conversation



Affective Dialog Encoder for Personality Recognition in Conversation

How to recognize the personality of a speaker with limited utterances in
conversation?
• Limitations in existing studies

• Analyze single utterances, overlook the structures of dialog flow
• Focus on content understanding, neglect affective expressions

• Intuition: extracting information from multiple aspects in 
limited utterances for personality recognition

• affective expressions of speakers (inspired in
psychology findings)

• emotional interactions among speakers in dialog flows

• Challenges: Accurately obtaining real-time affective 
annotations of utterances is impractical (reason of the first)

• Automatic annotation with Pre-trained Emotion
Recognition in Conversation (ERC) model

• Token-level affective embeddings
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Affective Dialog Encoder for Personality Recognition in Conversation

• Problem Formulation
• Given: dialog content 𝑿 = {𝒖𝟏, 𝒖𝟐, … , 𝒖𝒏} among a speaker 𝒔 and other speakers, 𝒖𝒊

is the 𝒊-th utterance 

• Assumption: the personality of 𝒔 can be inferred from the semantics in dialog 
content 𝑿

• Objective: recognize the binary big-five personality trait of 𝒔, denoted as 𝒚. 𝒚 is 
represented as a 5-𝒅 binary vector [A, C, E, O, N] indicating Agreeableness, 
Conscientiousness, Extraversion, Openness, and Neuroticism
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Affective Dialog Encoder for Personality Recognition in Conversation
• Model Design of Affective Dialog Encoder
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Token-level Affective Information Extraction

Dialogue-level
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Utterance-level Emotional
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Affective Dialog Encoder for Personality Recognition in Conversation

• Experiment Settings
• Dataset: FriendsPersona & CPED (TV series scripts)
• Tasks (Evaluated by Personality Recognition F-

scores):
• Overall: takes the content of whole dialog flow for 

personality recognition
• Flow: inputs first 25%, 50%, 75%, and the whole 

dialog flow, respectively for personality recognition
• Baseline models:

• RoBERTa (S): only the speaker’ utterances
• RoBERTa (S+C): the speakers’ utterances + Context
• RoBERTa (F): the whole dialog flow

• Ablation sub-models:
• ADE (VAD): only VAD affectivity in utterances
• ADE (EMO): only emotion interaction modeling

Dataset Statistics
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Affective Dialog Encoder for Personality Recognition in Conversation

• Experiment Results and Findings
• Integrating affective information and modeling emotional interaction together enhance 

personality recognition in conversation
• The impact of utterance affective information (Green lines) on personality recognition 

is evident in a shortage of dialog content
• With only one or two utterances, ADE can instantly recognize the speaker's 

personality (by over 0.6 F-scores)

Experiment results of FlowExperiment results of Overall

Red, Green, Blue lines are our methods
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Research Contribution 2
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DesPrompt: Personality-descriptive Prompt Tuning 
for Few-shot Personality Recognition

-- A new method integrating psycho-linguistic knowledge 
to fine-tune pre-trained language models with only tens 
of annotations for personality recognition



DesPrompt: Personality-descriptive Prompt Tuning for Few-shot Personality Recognition

How to recognize personality with limited labeled data for training?
• Limitations of existing studies:

• Unsupervised statistical lexical analysis, lack of semantic understanding
• Fine-tune pre-trained language models (PLMs), requires thousands of annotated samples

• Intuition: Encapsulate input with personality-descriptive prompts for parameter-efficient fine-
tuning

• Lexical hypothesis of personality
• Prompt-based fine-tuning

• Challenging issues:
• Finding precise and commonly used

adjectives describing personality
• Generating both specific (to each input)

and general (commonly suitable) 
prompt content
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DesPrompt: Personality-descriptive Prompt Tuning for Few-shot Personality Recognition

• The overview of DesPrompt
Label words:
• Trait-descriptive adjectives

(psycho-linguistic findings)
• Synonyms and antonyms

(knowledge graph)

Pre-finetuning prompt generation
model T5 to learn the appropriate 
context of label words

Generate prompt content
coherent with the input 

Obtain the posterior weight
for each label word 

Prompt-based Fine-tuning PLM with:
• Label words with their

posterior weights
• Prompt content
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DesPrompt: Personality-descriptive Prompt Tuning for Few-shot Personality Recognition

• Experiment Settings
• Dataset: FriendsPersona & Essays & myPersonality & Pan-AP-2015
• Baseline models:

• Traditional fine-tuning: Fine-tune
• State-of-the-art prompt-tuning: , PET, LM-BFF, KPT

• Tasks (Evaluated by Personality Recognition F-scores):
• Few-shot personality recognition

Basic statistics and label distributions (positive : negative) of the four datasets 
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DesPrompt: Personality-descriptive Prompt Tuning for Few-shot Personality Recognition

• Experiment Results
• Quantitative: significantly outperforms existing methods, especially in zero-shot and few-shot 

scenarios (Blue lines are our approach DesPrompt)
• Qualitative: generates commonly used label words to describe personality
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Research Contribution 3
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Personality-affected Emotion Generation in 
Dialog Systems

-- A new research task of Personality-affected Emotion 
Generation, a new dataset with emotion and personality 
annotations, and a new model integrated with psychology findings



Personality-affected Emotion Generation in Dialog Systems
How to generate appropriate emotion for response to users?
• Limitations of existing studies in emotional response generation:

• Render manually specified emotions rather than automatically generate emotions
• Learn general empathetic patterns of common people, ignore individual differences

• Intuition: Equip dialog system with personality traits to facilitate automatic emotion generation
• The speaker‘s current emotion is derived from the preceding emotion in conversation, 

and this process is influenced by the speaker’s personality (psychological finding)

• Challenge: “one-to-many” nature of dialogues
• Multiple emotions can be appropriate in a similar 

conversation context, only one can be selected for 
the response each time
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Personality-affected 
Emotion Generation 



Personality-affected Emotion Generation in Dialog Systems
• We raise a new task: Personality-affected Emotion Generation
• Problem Definition

• Given:
• the dialog context 𝑪 = {(𝑼𝟏, 𝑬𝟏), (𝑼𝟐, 𝑬𝟐), … , (𝑼𝒏%𝟏, 𝑬𝒏%𝟏)} including all the 

preceding 𝒏 − 𝟏 utterances, where 𝑬𝒊 is the emotion label for each utterance 𝑼𝒊
• The specified personality trait 𝑷 to the dialog system

• Objective: generate an appropriate emotion 𝑬𝒏 for the upcoming response 𝑼𝒏 to 
the user

• 𝑬𝒏 should conform to the specified personality trait 𝑷 in the current context 𝑪

Emotions in the VAD Space
The big-five personality traits and descriptions
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Personality-affected Emotion Generation in Dialog Systems
• Model Design

• Emotion generation: the mood state transition in the VAD space
• Affective information in dialog content is the variation, personality is the weights
• Coefficients in linear analysis from small groups (72 samples) à Trainable model

parameters supervised by large-scale dialog data
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Correlations between:
• Personalities in big-five
• Tendency of emotions in VAD



Personality-affected Emotion Generation in Dialog Systems
• Personality Emotion Line Dataset (PELD)

• An emotional dialog dataset of 6.5k dialogues with
personality annotations for speakers

• Dialogue script of a famous TV series Friends

Statistics in PELD

A triple example in PELD
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Personality-affected Emotion Generation in Dialog Systems
• Experiment Settings:

• Dataset: PELD
• Evaluation metric: F-scores of emotion generation (with statistical significance test)
• Sub-models in ablation study: BERT, BERT-Mood, BERT-P, BERT-MT

• Result:
• After integrating personality-affected mood state transition, our model achieved the 

best emotion generation performance (green values indicate the outperformances are
statistically significant (p < 0.05))

24Emotion Generation F-scores



Research Contribution 4
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Decode with Template: Content Preserving 
Sentiment Transfer

-- A new method of incorporating lexical modification with 
semantic generation for effective language style modification



Decode with Template: Content Preserving Sentiment Transfer

A toy example of Sentiment Transfer

How to modify the language style (sentiment) without revising the
remaining semantic content?
• Limitations of existing studies:

• Instance-level lexical modification: disrupting the naturalness of the output content
• Semantic disentanglement in latent space: poor sentiment transfer accuracy

• Intuition: Incorporate lexical modification with content generation from latent semantic space
• Lexical modification: effective sentiment transfer
• Semantic generation: natural content preservation
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• Problem Formulation:
• Given:

• a set of sentences with sentiment labels 𝑿 = {(𝒙𝟏, 𝒚𝟏), … , (𝒙𝒏, 𝒚𝒏)}, where 𝒙𝒊 is 
a sentence whose sentiment label (either “positive” or “negative”) is indicated 
by 𝒚𝒊

• Assumption:
• The sentiment of a sentence can be split from semantic content

• Objective:
• For each 𝒙𝒊, generate a semantic coherent sentence 6𝒙𝒊 :

• rendering the sentiment 6𝒚𝒊 opposite to 𝒚𝒊 ,
• preserving the original content of 𝒙𝒊

• Challenge: No parallel data (sentences with similar semantic content but different 
sentiments) to supervise the model for neither:

• Sentiment transfer
• Content preservation

Decode with Template: Content Preserving Sentiment Transfer
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• Model Design of Decode with Template
• Identify and replace sentiment words with words:

• in the opposite sentiment
• coherent with the original context 

• Use sentiment-free template to preserve semantic content in generation

• Supervision for sentiment transfer: classification with pre-trained sentiment classifier
• Supervision for content preservation: reconstruction of original input

Decode with Template: Content Preserving Sentiment Transfer
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• Experiment Settings
• Dataset: Amazon & Yelp reviews
• Evaluation methods:

• Automatic evaluation & Human evaluation
• Sentiment transfer accuracy, Content preservation, Naturalness

• Baseline models:
• Semantic disentanglement: Cross-Alignment Auto-Encoder (CAAE) , Control and 

Generation (CtrlGen) , Back-translation for Style Transfer (BST) 
• Instance-level lexical modification: TemplateBased , DeleteAndRetrieve

• Ablation study:
• w/o Template
• w/o Content Representation
• w/o Adversarial Training 

Decode with Template: Content Preserving Sentiment Transfer

Statistics in Amazon and Yelp datasets 29



• Results and Analysis
• Our method effectively transfers the sentiment while preserve the sentiment-free

semantic content
• Our method generates semantic coherent (with high Naturalness) sentences
• The modified template (our key innovation) is a critical component to enhance 

content preservation

Automatic evaluation results Human evaluation results Ablation study results

Decode with Template: Content Preserving Sentiment Transfer
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Conclusions
• We pinpoint the limitations in personalization, emotional intelligence, and 

language style consistency within current dialogue systems

• In response to the research gap, we design a research framework for 
comprehending and reflecting personality in dialog systems and address issues
within:

• Personality recognition in conversation (with new methods)
• Personality incorporation for emotion generation (with new dataset and task)
• Language style modification (with new method)

• Our work takes a step towards creating more humanized conversational agents 
and improving conversational services such as empathetic companions, social 
chatbots, and AI-based mental therapy



Future Directions
• Expanding the range of personality traits in dialog systems

• Big Five personality traits
• Myers Briggs Type Indicator (MBTI)
• Specifically designed traits

• Incorporating non-verbal cues into personality understanding and reflection
• Facial expressions, tone of voice, gestures, physiological signals…

• Investigating ethical considerations in dialog systems
• Ensures that the model's responses are not only accurate and coherent but also safe, 

ethical, and desirable from the perspective of users
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